Lre1 Directly Inhibits the NDR/Lats Kinase Cbk1 at the Cell Division Site in a Phosphorylation-Dependent Manner
نویسندگان
چکیده
BACKGROUND The nuclear Dbf2 related (NDR) family of protein kinases play important roles in cell-cycle regulation, apoptosis, cell morphogenesis, and development in a variety of organisms. In budding yeast, the NDR kinase complex composed of Cbk1 and its regulatory subunit, Mob2, have an established role in the control of cell separation/abscission that follows cytokinesis. Whereas the activators of Cbk1-Mob2 have been more extensively described, the mechanisms that restrict or inhibit Cbk1-Mob2 catalytic activity remain largely unknown. RESULTS We identified the protein Lre1 as a direct inhibitor of Cbk1-Mob2 catalytic activity. We show that Lre1 accumulates at the cell division site in late anaphase and associates with both Mob2 and Cbk1 in vivo and in vitro. Biochemical and functional analysis established that the ability of Lre1 to associate with Cbk1-Mob2 was reduced by mitotic Cdk1 activity and promoted by Cdc14 phosphatase at the end of mitosis. The inhibition of Cbk1-Mob2 by Lre1 was critical to promote the survival of cells lacking the actomyosin driven pathway of cytokinesis. CONCLUSIONS We established Lre1 as a direct inhibitor of the NDR kinase Cbk1-Mob2, which is regulated in a cell-cycle-dependent manner. We propose that similar inhibitory proteins may also provide fine tuning for the activity of NDR kinases in other organisms.
منابع مشابه
The NDR/LATS Family Kinase Cbk1 Directly Controls Transcriptional Asymmetry
Cell fate can be determined by asymmetric segregation of gene expression regulators. In the budding yeast Saccharomyces cerevisiae, the transcription factor Ace2 accumulates specifically in the daughter cell nucleus, where it drives transcription of genes that are not expressed in the mother cell. The NDR/LATS family protein kinase Cbk1 is required for Ace2 segregation and function. Using pepti...
متن کاملThe yeast LATS/Ndr kinase Cbk1 regulates growth via Golgi-dependent glycosylation and secretion.
Saccharomyces cerevisiae Cbk1 is a LATS/Ndr protein kinase and a downstream component of the regulation of Ace2 and morphogenesis (RAM) signaling network. Cbk1 and the RAM network are required for cellular morphogenesis, cell separation, and maintenance of cell integrity. Here, we examine the phenotypes of conditional cbk1 mutants to determine the essential function of Cbk1. Cbk1 inhibition sev...
متن کاملThe NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans
In nature, many microorganisms form specialized complex, multicellular, surface-attached communities called biofilms. These communities play critical roles in microbial pathogenesis. The fungal pathogen Candida albicans is associated with catheter-based infections due to its ability to establish biofilms. The transcription factor Bcr1 is a master regulator of C. albicans biofilm development, al...
متن کاملThe Structure of an NDR/LATS Kinase–Mob Complex Reveals a Novel Kinase–Coactivator System and Substrate Docking Mechanism
Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. "Hippo" pathways are ancient protein kinase signaling systems t...
متن کاملCbk1 kinase and Bck2 control MAP kinase activation and inactivation during heat shock
Saccharomyces cerevisiae Cbk1 kinase is a LATS/NDR tumor suppressor orthologue and component of the Regulation of Ace2 and Morphogenesis signaling network. Cbk1 was previously implicated in regulating polarized morphogenesis, gene expression, and cell integrity. Here we establish that Cbk1 is critical for heat shock and cell wall stress signaling via Bck2, a protein associated with the Pkc1-Mpk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013